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Abstract—This paper presents an analytical procedure for simultaneous convective and radiative heat
transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional
propagation of radiative transfer and also shows the numerical results on the temperature profiles
and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional
radiative transfer, one has to solve the entire ranges of the temperature field simultaneously both
along the radial and flow directions. Besides the heat flux by thermal radiation emitted from the
heating wall propagates upstream so that it is necessary to examine the temperature profiles of the
flowing medium to a certain distance upstream from the entrance of the heating section. In this way
in order to attempt to solve the governing equation numerically by a finite difference method the
dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation
is required. Consequently the band matrix method is used and the temperature profiles of the medium
in the both regions upstream and downstream from the entrance of the heating section are illustrated
and the heat-transfer results are discussed in some detail by comparing with those of the one-dimensional

transfer of radiation.

NOMENCLATURE
B(T), intensity of black body radiation, = (g/x)T*;
¢,  specific heat of fluid at constant pressure;
FI(t,), integral defined by equation (25);

Fy(t.,70), integral defined by equation (24);

Jo extinction function of thermal radiation
from fluid;

fw»  extinction function of thermal radiation
from wall;

H(tyn), integral defined by equation (14);

Hy(t,,7qn), integral defined by equation (15);
local heat-transfer coefficient;

X

I(y), modified Bessel function of first kind with
nth order;

i, lattice point of finite difference along axial
direction;

J lattice point of finite difference along radial
direction;

J(T,), radiation intensity from wall;

K,(y), modified Bessel function of second kind
with nth order;

k, thermal conductivity of fluid;

Iy, number of divisions of lattices along axial
direction in the region upstream;

ly, number of divisions of lattices along axial
direction in the region downstream;

m, number of divisions of lattices along radial
direction;

Ny, dimensionless parameter denoting relative

role of conduction to radiation,
= kk/40T2;
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Nuyc, local Nusselt number by convection;
Nugg, local Nusselt number by radiation;
Nuyr, local Nusselt number;

n, number of divisions of lattices along
circumferential direction;

Pr,  Prandtl number;

gc,  convective heat flux;

qz, radiative heat flux vector;

q,, radiative heat flux;

qr., radial component of radiative heat flux
vector;

qrx, axial component of radiative heat flux
vector;

R, pipe radius;

Re, Reynolds number;

r, radial coordinate;

s, distance between medium under
consideration and medium situated at
another point (Fig. 1);

s,, distance between medium and wall surface
(Fig. 1);

T, temperature of fluid;

T., cup-mixing mean temperature of fluid;

T,, wall temperature;

T,0, wall temperature in the region upstream
from heating section;

T,;, wall temperature in the region downstream
from heating section;

t, optical distance defined by (t,, — 7, @) (Fig. 1);

U, dimensionless axial velocity, = u/u,,;

u, axial velocity of fluid;
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u,, mean axial velocity of fluid;

X, axial coordinate;

x;, axial coordinate of other medium;

¥, independent variable in equation {14);

zo,  optical distance shown in Fig. 1;

zy,  optical distance shown in Fig. 1.

Greek symbols

£10 surface emissivity of wall;

n, dimensionless radial coordinate, = r/R;

Ay, finite difference of n;

8, dimensionless temperature of fluid;

6,, dimensionless mixing mean temperature of
fluid;

8,0, dimensionless wall temperature in the
region upstream;

0,,, dimensionless wall temperature in the
region downstream;

K, absorption coefficient of fluid for radiation;

i, viscosity of fluid;

v, kinematic viscosity of fluid;

£, dimensionless axial coordinate,

= (x/R)/(RePr};
A¢, finite difference of &;
2, density of finid;

o, Stefan—Boltzman’s constant;

7, optical thickness;

T optical radius, = kR,

Tg, optical distance between medium under

consideration and medium situated at
another point (Fig. 1);
optical distance between medium and wall

1:Swa

surface (Fig. 1);
Tys optical axial coordinate, = xx;
7,1, optical axial coordinate, = kxy;
b, azimuthal angle;

A, interval of finite difference along
circumferential direction.

1. INTRODUCTION

ALTHOUGH a number of studies on composite heat
transfer with flowing radiative gases in a circular tube
have been performed, further investigations on the
heat transfer with the thermal radiation under high
temperature and high heat flux have become in-
creasingly important in recent years with the develop-
ment of high temperature techniques. In general, the
radiative heat transfer is characterized by its funda-
mental nature as having an action-at-a-distance and
selection rule for the frequencies, i.e. nongray behavior.
Being cumbersome to analyze by taking account of
the nongray characteristics of radiating media, there
exists, however, no essential difficulty in mathematical
treatments and recently a few analytical methods
f[1-2] have been reported. On the other hand, the
action-at-a-distance can be expressed by the integral
terms in an energy equation, which results in the
integro-differential equation with high order non-
linearity. The analytical treatments on this integro-
differential equation have been developed by many
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researchers and the relevant exposition on the numeri-
cal analyses is found in the literature [3-4]. With a
few exceptions the radiative heat flux, appeared in the
energy equation, is approximately expressed as one-
dimensional propagation. In the current study, the
propagation of thermal radiation is treated as being
two-dimensional and then the contributions of radi-
ative energy from the wall surface and the flowing
medium are estimated more exactly and the validity
of the one-dimensional analysis of radiation, the tem-
perature profile in the region upstream from an
entrance (x < 0), the temperature profile around the
starting point of the heating section and the heat-
transfer characteristics will be discussed in some detail.
Although there are a few reports [5-6] in which the
radiative heat transfer is taken into account as being
two-dimensional, they are in want of the precision due
to the constraints in numerical procedure and the
analytical methods used are in want of generality and
further the propagation of thermal radiation into the
region upstream is not considered at all. Alternatively
on account of the axial heat conduction the heat
transfer into the region upstream from the region
downstream should be considered both for a flow with
extremely low velocity [ 7] even if the effect of radiation
is not prominent and for low Prandtl number medium
such as liquid metal.

2. THEORETICAL ANALYSIS
2.1. Descriptions of problem
The coordinate system and the physical model are
illustrated in Fig. 1. The basic assumptions and the
postulations introduced for the analysis are as follows.

T ’rwo

(X))
Ur)

By =8y,
FiG. 1. Coordinate system and physical model.

(i) The flowing medium is a nonscattering radiative
gray gas which can absorb and emit thermal
radiation.

(ii) The flowing medium is incompressible and the
physical properties of the medium are constant.

(iii} The surface of a pipe is a gray diffuse emitter
and reflector.
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{iv) The flow field is fully developed laminar and its
velocity profile is parabolic from the pipe inlet.

{v) The surface temperature is T, in the region
upstream from the heating section (x < 0), and
T,,1 in the region downstream from the heating
section (x > 0). ,

(vi) The radiation field is in local radiative equilib-
rium and the two-dimensional propagation of
radiation is taken into account (i.e. the approxi-
mation 0qg,/0x « (1/r)d(rqg,)/ér is not valid).

The formulation of the energy equation with the one-
dimensional radiative transfer yields a contradiction to
the assumption (v) and the tractable speculation shows
that the radiative heat flux from the wall around the
entrance region (x = () may be overestimated by a
factor of 2T4 AT+ T4) and, further, a rate of tem-
perature rise along ¢ is not evaluated rigorously. In
the one-dimensional approximation of radiative trans-
fer the contribution of radiation from the high tem-
perature surface and the heated flowing medium to
the medium in the region upstream are not considered
at all. Though the foregoing contributions of radiation
may be seemingly counterbalanced by each other as
the resultant heat-transfer characteristics, it may be
stressed that the two-dimensional transfer of radiation
has to be taken into account for the purpose of
examining the temperature profiles and the heat-
transfer mechanism in detail. Further it is worth noting
that the consideration of medium upstream from the
entrance as a consecutive flowing medium to the
heating section is of importance as a basic kind of
heat-transfer problem.

2.2. Basic equations

Based on the assumption that the flow field is the
fully developed laminar flow, the heat balance in the
pipe flow yields the basic equation governing the
temperature field.

oT 1/ or )
pc,u—a—;-k;—a—r<r5-)-dlvqx (1)

Where divgg is the divergence of the radiative heat
flux vector and is given as follows.

-~divgg = "j J(xy) f,(x,1; x,, R)dS
s

'*'KJ‘ Blxy, ry) filx,7; x4, 1)dV
4 —4kB(x,r). (2

In equation (2) the first and second terms on the
righthand side represent the contributions by emission
from the wall and other flowing medium, respectively
and the third term represents self-cmission by ¢
medium itself. The boundary conditions are taken as
foliows.

r=0:
r=R:
X = —co:

oT/or =0 )
T=Tu(x>0), T=Tyex<0).
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Since equation (4) in the boundary conditions has to be
treated carefully in numerical calculations, it will be
discussed later. Referring to Fig. 1, equation (2) becomes

w : 3 —
—divgg =2 J f Ty TR 5)
i JO S

W

2
x R(R—r.cos ¢)de dx, + 2k ——
n

R © L4 —
x j " f T‘(x,,ro{ J Mw}
[+ —@ [+ ] s
x dx,dr; —dxoTHx,7). (5
Multiplying both sides of equation (1) by (R*/kT,,)

and arranging it in the dimensionless form, the energy
equation can be manipulated into the form,

0 18/ a0\ & ([~ .,
%U'éz— ﬂa’? (’76,’)+2NR J\_mew(fxl)

y {_1_ J‘“E’ﬂ_‘s‘_’ﬂ@o—rcos ¢)d¢}d7xl

% Jo Taw

Tg 1 «© 94
+o5 x1is
2N Jo M J:m {tz1,m)

1 {"exp(—1,
x{;j —g-gz——)dda}drxldm

0 Ts

-152’-9“( ) (6)
N O

where the dimensionless variables and parameters in
equation (6) are defined as

§=T/T,, &=(x/R)/RePr, Re=2u,Rfv,

Pr= Cp}l/k, N.R = kK/“T:;, T = KR,
Ts = K8,

)

T=KI, Ty=KX, Tgw= KSy,
n=r/R=1/ty, U=ufu,=2(1-1’).

Referring to Fig. 1 again t,,, and 7, are given by

Ty = (2 +28)}
= [(tx~1e1)* + T2+ 18 =2170c08 $]*  (8)

1, = (2 +25)*
= [(ty =1 +12 +1i 2175008012, (9)

The boundary conditions are rewritten as follows.

n=0: 96/0n=0,

E=—o0: O=10,

(10)
(11)

where 8,, denotes the dimensionless wall temperature
and is given by,

0. = 8,=10) 1,>0(x>0)
v 7, < 0(x < 0).

n=1: 6=48,

6y (12

2.3. Simplification of radiative heat flux

Performing the integration on 7,, under consider-
ation of 7, — 7, = ¢ and dr,, = dt in the radiative term
which denotes the contribution of radiation from the
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F1G. 2. Lattice of finite difference.

wall, the radiative term becomes as follows irrespective
of the signs of 7.

0 sw
1 © % oxp(—
=-(01‘+0§,0)J Jw(ro—rcosd))d(ﬁdt
T 0 0 sw

1 Tx L4 .
+—(93,—930)f Jw(ro—rcosd))d(pdt
T

0 [ Tsw
= (05, + 00, H{z,m) + (05, — 03 ) Hyl(z, T,1) (13)

where H(t,n) is the same function as the extinction
function of radiation from the wall used in the one-
dimensional approximation of radiative transfer and is
defined as

H(z,n) = J Ki(@woml(tny)y 'dy  (14)
1
and H,(z,, 7,n) is defined as follows.
Hi(Tx’ L) '7)
O exp( - Tsw) .
== TR ey, — S
. L L =y (r,—tcos ¢p)dede. (15)

Here, I,(y) and K,,(y) are the modified Bessel functions
of the first and second kind with nth order, respectively.
The radiative term which denotes the contribution of
radiation from other medium cannot be calculated
independently because of the presence of unknown
temperatures 6(z,,, 77;) in the integrant in equation (6).

3. NUMERICAL ANALYSIS

3.1. Principal procedure

Energy equation (6) constitutes an integro-differen-
tial equation with high order nonlinearity on 8 and it
seems to be formidable to get an analytical solution.
Therefore, one has to calculate numerically and a finite
difference method may be a plausible means. It may
be pointed out concerning the numerical computation
that as the progressive procedure on ¢ cannot be
applied to solve the energy equation, the problems
should be solved simultaneously in a proper controlled
volume and that the number of the grids of finite
difference in the controlled volume is restricted to the
capacity of the computer. The controlled volume must
include not only the region upstream (£ < 0) but the

region downstream (£ > 0). Therefore, transforming the
energy equation into the algebraic equations by the
finite difference method, we have to solve the simul-
taneous linear equations having an extremely large
dimension.

3.2. Finite difference approximations

The equally spaced lattices of finite difference are
illustrated in Fig. 2. The intervals of finite difference
along & n and ¢ are designated A&, Ay and A¢,
respectively, and the radius is divided into m-equal
increments and the circumference into n-equal in-
crements (i.e.m.An = 1,n- A = n). A is not restricted
especially in a magnitude but A# is restricted because
of the precision in the evaluation of heat-transfer
coefficient. n is divided into ten equal increments in
executing the computation (m = 10, Ay =0'1) and
further the lattice intervals near the wall is subdivided
into two equal increments so as to elevate the precision
in the evaluation of heat-transfer coefficients. The cir-
cumference is divided into thirty-six equal intervals
(n = 36, A¢ = n/36) and the integrals on ¢ is estimated
by the trapezoidal formula. Intervals of finite difference
along ¢ will be discussed later in detail. In practice,
the numerical calculations cannot be performed in the
region from —oo to +oo with respect to £ and
therefore the controlled volume should be set in a
certain region from —IyA¢ to I;A¢ along &. As the
total number of lattices of finite difference should be
determined by the capacity of the computer, and there-
fore we choose I, = 9 and [, = 21. However, the con-
tribution of radiation is considered in the region
from —{lo+1,)AE to (lo+1)AE around an arbitrary
point (¢ = i-A¢) and further the temperatures in the
region outside of the controlled volume are approxi-
mated to be identical with those at ¢ = —I;A¢ and
[ A¢ as illustrated in Fig. 3. In such a case it is
favorable to satisfy the following condition,

K(10+11)Ax = (lo+ll)AéRePrT0 > 1 (16)

(this means that the radiation is attenuated sufficiently
when it travels for an optical path of (I, +I,)Ax) and
further it is desirable to consider up to 0-1 where
the convective temperature field develops sufficiently,
provided the radiation is not taken into account.



Heat transfer in a pipe with thermal radiation

Two

1153

Tw,

=
as

L1

| i Ty

£:—0-0039 §=-0003  £=-0-0009 §=0-0

Control volumes| Ty i

£=0-0021 £:0-003 £=0005!

FIG. 3. Floating region for calculating the radiative term.

3.3. Numerical methods
By the finite difference approximations the equation
(6) results in

1-G-An? o . Iy .
———A—é_o(!—l,])"(l“Ej)we(l,]—l)
1-(j-Agp> 2 o

+{ AZ *KAnV}G“”)

1N 1
—<1+2—j)(Xn)—29(l,]+1)

3

= 2 (0%, + 0% H(z, jAn) + (63, — 03 Hylr, tom)}
2Ng
‘L'j 1 ) 94
+2NR J‘O '71 J‘_w (Txla r’l)
n —_ 2
x{lj Ei‘—mz—mdcﬁ}drx‘drh—i()“(i, M. (7
T Jo Ts Ng

The integrals of radiative terms on the r.h.s. in equation
(17) are calculated by the trapezoidal or Simpson’s
formula. After the solution 8(i, /) in the entire region
of controlled volume without radiation is obtained, it
substitutes the radiative terms to obtain the first
approximation (i, /)’ and then the similar compu-
tations are performed repeatedly until the prescribed
convergence is satisfied. The convergence criterion is
given by the following inequality.

18§, )P — 83, *~ | < 0-0005. (18)

It needs to solve simultaneous linear algebraic equa-
tions of large dimension in order to get the solution
for the entire ranges of x and r. Fortunately the non-
zero elements in the coefficient matrix are com-
paratively few, and then the band matrix method [8]
is plausible for the present system.

3.4. Few remarks on performing numerical calculations

In order to get a better perspective of the numerical
calculations, and the evaluation results, it is worth
presenting the following discussions.

(i) At first we speculate the intervals of finite differ-
ence along &, It is noticed easily that ., is used as a
variable in the integration with respect to & in the
radiative term: Designating an infinitesimal of 7., as
Ar,,, there exists a following relation between A,
and an interval of finite difference AZ.

Aty = kx = Al-Re:Pr-z,. 19)

Accordingly, it is found that the precision of numerical
integration along ¢ does not depend on A¢ but
1,RePrA{. Based on a'theory of stability of finite
difference scheme on the parabolic partial differential
equation, a ratio of Az to A€ is not restricted especially
so long as the finite difference technique of an implicit
method is used. However, even if the finite difference
approximation is performed with the aid of an implicit
method, An/A¢ is not arbitrary because Art,, is re-
stricted to the precision in the numerical integration
of the radiative term. Then A¢ is limited in a magnitude.
In order to eliminate this restriction on the precision
of numerical integration with respect to ¢, it will be
necessary to approximate the integrant by a proper
polynomial based on the data in some lattice points
and to integrate this polynomial analytically.

(if) Next a settlement of the starting point of the heat-
ing section is discussed briefly. The wall temperature
varies stepwisely from T, to T,,, at the starting point
of the heating section and it has to be stressed that
the fluid temperature at & =0 is uniform provided
thermal radiation is absent. On account of finite
differentiation of the controlled volume there exist two
types of variation of the wall temperature and they
are illustrated schematically in Fig. 4 when the radiative
transfer is not taken into consideration. In case of (I) in
Fig. 4 the temperature of medium at the starting point
of the heating section in the convective temperature
field has already been raised because of the grid for finite
difference adopted here (shown in Fig. 2) so that the
wall temperature between & = —A&to £ = 00" has to

@ ()
§-A§ £00°6=AY &AL §-00 §-08
-

Location -
i | | 1 | i
! 1 | ! | |
1 | i i i |
T I
| ey

Voriations | | T | Two l
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|
|
i | !
!
[}

I

|
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’g:lz
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Convective
ltemperat-
ure field

Xschematic)

FIG. 4. Variations of wall temperature near the
starting point of heating section.
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be regarded as T,,,, in other words, the starting point
of the heating section must be shifted to & = —A¢&.
On the other hand, in case of (II) in Fig. 4 the
temperature of medium at the starting point of the
heating section is uniform and equals to initial tem-
perature T,,, because the wall temperature at that
point is restricted to T,q, so that this is plausible for
a settlement of the starting point. Accordingly we
adopt case (II) in Fig. 4 as the variation of the wall
temperature and the starting point of the heating
section is denoted by £ = 0-07. The starting point of
the heating section may be, however, dependent on
the type of the grid for finite difference.

(iii) Finally as already shown the convective term in
the energy equation is approximated by the following
finite difference.

3 _ 86,)) =01,

20
Ox Ax 20)

Atfisst, it is expected that 86/0x could be approximated
by the following finite difference approximation.

9 0i+1,)—0(—1,))
ox 2Ax '

21)

With this approximation, however, it was not easy to
get a tractable convergence which showed a wavy
vibrating profile of temperature along the radius. Con-
sequently the finite difference approximation of 96/dx
is performed by equation (20).

4. EVALUATION RESULTS AND DISCUSSIONS

4.1. Temperature profiles

The typical results of temperature profiles calculated
here are illustrated in Figs. 5-8. Figures 5 and 6
illustrate the variation of the temperature profiles with
the parameters of a reciprocal of Graetz number, ¢&.
The broken lines denote temperature profiles without
radiation. Figure 5 corresponds to the results for
7, = 10 and RePr = 1000. The temperature profiles in
the region upstream from the heating section are
characterized by the temperature peak near the wall.
The reason why there exists the temperature peak near
the wall in the region upstream is that the medium
in this region is heated by the radiation from the
region downstream and, therefore, is effected strongly
by the radiation from the heating wall in the region
downstream. Since the medium in the region upstream
is heated by the radiation alone, a rate of temperature
rise is rapidly reduced as aparting from the starting
point of the heating section and the temperature in
¢ < —0-0005 is almost as same as inlet temperature,
T,,0. Chained lines in the central part of a pipe in the
region downstream are obtained by the actual cal-
culations, which may be attributed to the presence of
a singular point on the central axis of a pipe and such
a behavior is also observed in the one-dimensional
analysis of radiation. However, as these curves do not
satisfy the boundary condition, i.e. 30/0r = 0 at r = 0,
the physically plausible curves are drawn by the solid
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FiG. 5. Temperature profiles vs (t,—1)/z, (effect
of ). Ng = 001; 1, = 1-0; RePr = 1000,

Dotted lines denote
convection without
radiation

o 02 o4 06 08 0

F1G. 6. Temperature profiles vs (t,—1)/t, (effect
of £). Ng = 001; 1, = 2:0; RePr = 1000.

lines in this and subsequent figures. Figure 6 illustrates
the temperature profiles for 1, = 20, Ng = 0-01 and
RePr = 1000 with the variation of parameter, £ The
effects of N on the temperature profiles are shown in
Fig. 7. For the medium upstream, ie. for ¢ <00,
the temperature rises uniformly in the entire region
of a pipe as Ny decreases. On the contrary, as Np
increases and is larger than O-1, the temperature rise
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F1G. 8. Temperature profiles vs (t,—1)/z, (effect
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denote the results obtained by one-dimensional
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in the region upstream almost diminishes and ap-
proaches to the case of the one-dimensional approxi-
mation of radiation. For the medium downstream,
corresponding to £ = 0-001, the temperature profiles
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are not distinguished from that without radiation as
Npislarger than 0-1. The temperature profiles obtained
by the one-dimensional analysis of radiation are lower
than those obtained by the two-dimensional one and
further the temperature difference between them
tends to increase as Ny decreases. The influences of
the optical thickness t, are depicted in Fig. 8 for
RePr = 1000 and Ny = 0-01. In the region upstream,
as 1, increases, the temperature peak near the wall
becomes higher and approaches to the close vicinity
of the wall. The temperature in the central part is not
elevated even if 7, increases. Such phenomena may be
attributed to the fact that the radiation energy pen-
etrates into the medium in case of small t,, while in
case of large 7, the radiation energy can not travel
into the deep central core even if the wall is kept at
high temperature and emits radiation intensively. In
the region downstream the remarkable temperature
rise is observed in the vicinity of the wall, while the
temperature in the central core is rather lower. Com-
pared with the temperature profiles obtained by the
one-dimensional analysis of radiation and those ob-
tained by the two-dimensional one for constant z,, the
former is lower than the latter. As to an effect of RePr
on the temperature profile in the region upstream
the temperature peak near the wall is higher with
decreasing RePr but the temperature in the central
part is elevated with increasing RePr. In general, as
the residence time of medium in a pipe is longer with
decreasing RePr and then the medium absorbs much
radiation with the increment of residence time and
the radiation from the region downstream penetrates
easily into the region upstream with a decrease of
RePr, the temperature rise in a pipe ought to be higher
with a decrease of RePr for constant Ny and t,.

4.2. Cup-mixing mean temperatures

The cup-mixing mean temperature in a dimension-
less form is defined as

1 1
0, = j Um)0(mndn /f Unndn.

0 0

22)

Figure 9 illustrates the relation between 0, and ¢ as
the parameters of denoting the relative role of con-
duction to radiation Ny and the optical thickness 7,.
In case of constant RePr and 1, the radiation emitted
from the medium in the region downstream penetrates
into the deeper region upstream as Ny decreases, so
that 6,, increases appreciably through the wide region
upstream. In case of constant RePr and Ng, the larger
1, 1s, the higher 0, is, but 6, decreases rapidly as
aparting from the entrance of the heating section.
Compared to the results obtained by the one-
dimensional analysis of radiation with those obtained
by the two-dimensional one in the region downstream,
it is found that 6, is underestimated in case of the
one-dimensional analysis. Reference to the figure
reveals the fact that although the radiation from the
wall surface in the region upstream is overestimated
near the starting point of the heating section in the
one-dimensional analysis, the temperature rise in the
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region upstream is ignored completely. By the way,
although, in the current study, the contribution of
radiation from other medium is underestimated due to
the limited controlled volume, 6,, obtained by the two-
dimensional analysis of radiative transfer is rather
higher than that obtained by the one-dimensional one.
Therefore these results are considered to be evaluated
in perspective of appropriate controlled volume and
the substantial difference will not be found even if the
computations will be repeated more exactly by taking
the larger controlled volume into account. The detailed
examination on this figure shows that when Ny, becomes
large and radiation is not dominant, there exists a
region where the temperature profiles obtained by the
one-dimensional approximation are higher than those
obtained by the two-dimensional propagation of radi-
ation. This is understood as follows. Since the tem-
perature rise in the region upstream is small for large
Ny in case of the two-dimensional analysis and such
a situation resembles the assumption used by the
one-dimensional case in which the contribution of
radiation from the wall surface in the region upstream
is overestimated, 6,, obtained by the one-dimensional
approximation is higher than that obtained by the
two-dimensional treatment. In the region far down-
stream 6, obtained by the two-dimensional analysis,
however, is higher than that obtained by the one-
dimensional one even if Ny is large. This fact indicates
that the contribution of radiation from other medium
is underestimated by the one-dimensional approxi-
mation in this region. The examination on the variation
of 6, with the variation of parameter RePr is not
reproduced here on account of a similar trend as
discussed in Section 4.1.

4.3. Net radiative heat flux at wall surface

The net radiative heat flux at the wall surface g,
consists of leaving and incoming fluxes of radiation
and is obtained by subtracting the radiation heat flux
which is emitted by the other wall and reaches to the
controlled surface after being attenuated by the flowing
medium and the radiative heat flux emitted by the
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flowing medium of the entire controlled volume from
the radiative heat flux emitted by the controlled surface.

_kTu[ = 0t T
R |4N; * 2Ng
X {031 + 050 FI(t,) + (031 — 050)Fe(ts, T,)}

R S 1 ["exp(—1y,)
"2 J J 94(Tx1s'lx){—J T3
Nr J-wJo T Jo Ts

x (L—n, cos ¢)d¢}'11 dn, de1:| (23)

r

where

F{(Tx’ 1"0) = :[

o T

— (1—cos ¢)*dpdr (24)

0 sw

=1 J\n exp(_rsw)

Flz,) = f mlj”M(l—cos oRdede (25)

o TJo sw

here FI = 0297977 for t,= 05, FI = 0203573 for
7, =10 and FI =0-118225 for t,=20. In case of
Owo = 0,1, g, in equation (23) is agreed with that
obtained by the one-dimensional approximation of
radiative heat flux. Figure 10 illustrates the relation of
g, vs &. In the domain of ¢ < 0 the radiative heat flux
is negative and the absolute value is plotted in the
figure. The radiative heat flux is sufficiently decayed
in the controlled volume in the region upstream and
for constant Ny as 1, becomes large, the trend of drastic
extinction of the radiative heat flux is found. This fact
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FiG. 10. Net radiative heat flux at the wall vs & (in case of
RePr = 1000, in ¢ < 0 radiative heat fluxes are negative but
in this figure the absolute values are illustrated).
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seems to show the controlled volume adopted here in
the region upstream is valid. In the region downstream,
the radiative heat flux is increased as the parameter
Ny decreases for constant optical thickness 1,, while
the radiative heat flux is shown to decrease as the
optical thickness t, decreases when the parameter Ny
is held constant. Further it is found that the radiative
heat flux obtained by the one-dimensional approxi-
mation of radiation is smaller than that obtained by
the two-dimensional estimation near the starting point
of the heating section. This is due to the fact that in
the region downstream the radiative heat flux by the
one-dimensional analysis is smaller than that by the
two-dimensional one because of the underestimation
of radiation from the wall surface in the region up-
stream, provided that the contribution of radiation
from other medium is not underestimated. But, for
small Np the radiative heat flux by the one-dimensional
analysis tends to be larger than that by the two-
dimensional one. This is caused by the fact that the
contribution of radiation from other medium cal-
culated by the one-dimensional analysis is under-
estimated than that calculated by the two-dimensional
one.

4.4. Heat-transfer characteristics

Nusselt number is defined so as to evaluate the
heat-transfer characteristics and for the two-dimen-
sional propagation of radiation the local Nusselt
numbers are defined in a similar way to the one-
dimensional radiative transfer.

he.2R  qc+gg

Nugr =27 = k(Tw—’IZ,,)'ZR = Nugc+Nug  (26)
0
Nuge = z(_"> /Ou—00) @
5" n=1
kT,
Nugg = 2<T1>‘1R/(9w‘_9m)- (28)

Figure 11 illustrates the relation between these local
Nusselt numbers against £ Reference to Fig. 11 for
RePr=1000 and 7, =10 reveals that Nu,, is in-
creasing rapidly far from the starting point of the
heating section upstream. It is found that the heat-
transfer characteristics obtained by the one-dimen-
sional analysis are underestimated than those obtained
by the two-dimensional one near the starting point
of the heating section down the stream. This is due to
such a trend that Nu,c and Nu. in the one-dimensional
case is larger than those in the two-dimensional one.
The broken lines in these figures, denoted by Nu,,
tend to be small as Ny decreases and such a phenom-
enon indicates that a ratio of convective heat transfer
to the overall heat transfer decreases with a decrease
of Ng. Reference to Fig. 11 again for RePr = 1000
and 7, = 20 shows that the results obtained by the
one-dimensional approximation, being depicted only
for Ng = 0-01, are smaller than that obtained by the
two-dimensional evaluation.
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5. CONCLUDING REMARKS

On composite heat transfer of laminar flow in a
circular tube the energy equation with the two-dimen-
sional propagation of thermal radiation is solved
numerically for a certain controlled volume involving
the region upstream from the starting point of the
heating section. Further the validity of one-dimensional
propagation of radiation, the temperature profiles
around the entrance of the heating section and the
heat-transfer characteristics have been examined in
some detail. The important conclusions obtained here
are as follows:

(1) For large dimensionless parameter Ny the tem-
peratures in the region upstream do not increase and
are almost identical to those in case of pure con-
vection. For small Ny the temperature profiles in the
region upstream are characterized by the temperature
peak near the wall, which becomes higher with a
decrease of Ny and approaches to the close vicinity
of wall with an increase of optical thickness, 7,. In
general, for constant 7, the temperature rise in the
region upstream becomes prominent with a decrease
of N and the temperature is elevated to a certain
extent up to the region far upstream and for constant
Ny arate of temperature rise decreases with an increase
of 7,.

(2) The temperature profiles and the mixed mean
temperatures obtained by the one-dimensional ap-
proximation of radiation tend to be lower than those
obtained by the two-dimensional evaluation of radi-
ation at small reciprocal of Graetz number ¢ and such
a tendency is emphasized for small Ny and for large 7,.
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(3) The local Nusselt number, Nu,r in the region
upstream from the heating section increases rapidly as
aparting from the starting point of the heating section.
The heat-transfer characteristics obtained by the one-
dimensional analysis is underestimated than those
obtained by the two-dimensional one near the entrance
of the heating section in the region downstream.
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TRANSFERT DE CHALEUR MIXTE DANS UN TUBE AVEC RAYONNEMENT
THERMIQUE BIDIMENSIONNEL—EN RELATION AVEC L’AUGMENTATION DE
TEMPERATURE DANS L’ECOULEMENT EN AMONT DE LA SECTION DE CHAUFFAGE

Résumeé —L article présente une méthode analytique pour I'étude du transfert de chaleur par convection
et rayonnement simultanés en écoulement laminaire établi dans un tube en tenant compte de la propagation
bidimensionnelle du rayonnement. Sont également présentés les résultats numériques relatifs aux profils
de température et aux caractéristiques du transfert thermique. Afin de résoudre I'équation de I'énergie
avec rayonnement thermique bidimensionnel, 'on doit traiter simultanément, toute I'étendue du champ
de température & la fois dans la direction radiale et dans la direction de I'écoulement. De plus, le flux
de chaleur par rayonnement thermique émis par les parois chauffantes se propage a 'amont, si bien
qu’il est nécessaire d’examiner les profils de température dans I'écoulement & partir d’une certaine distance
située a 'amont de Pentrée de la section de chauffage. Ainsi, afin de tenter de résoudre I’équation
fondamentale numériquement & I'aide d’une méthode de différences finies, la dimension de la matrice
devient trés grande pour que la validité exigée des calculs numériques soit satisfaisante. En conséquence,
la méthode de zone est utilisée et les profils de température dans le fluide sont calculés aux niveaux
amont et aval de la région d’entrée de la section de chauffage. Les résultats de transfert de chaleur sont
discutés en détail par comparaison avec ceux du transfert par rayonnement unidimensionnel.

WARMEUBERGANG IM ROHR BEI ZWEIDIMENSIONALER WARMESTRAHLUNG
IN VERBINDUNG MIT DEM TEMPERATURANSTIEG IN DER STROMUNG
STROMAUFWARTS VOM BEHEIZTEN ABSCHNITT

Zusammenfassung— Der Aufsatz stellt die Analyse des gleichzeitigen Warmeaustausches durch Konvektion
und zweidimensionale Strahlung bei ausgebildeter laminarer Rohrstr6mung vor. Fiir die Temperatur-
profile und den Wirmeibergang werden Zahlenergebnisse mitgeteilt. Die Losung der Energiegleichung
erfolgt unter Beriicksichtigung der zweidimensionalen Warmestrahlung nach Ermittlung des Temperatur-
verlaufs in Strémungsrichtung und quer zur Strémung. Durch Abstrahlung der Heizfliche findet
Wirmeaustausch bereits stromaufwérts statt, so daB es erforderlich ist, die Temperaturprofile in der
Strémung in einiger Entfernung vor dem beheizten Abschnitt zu iberpriifen. Auf diese Weise erhilt man
bei Anwendung der Methode der finiten Differenzen zur Losung der Ausgangsgleichung eine Lsungs-
matrix von erheblichem Umfang, wenn die numerische Auswertung befriedigende Genauigkeit ergeben
soll. Folglich wird von der Band-Matrix-Methode Gebrauch gemacht, und die Temperaturprofile werden
stromaufwarts und stromabwirts vom Eintritt in die Heizstrecke erstellt. Die Ergebnisse fiir den
Wirmeiibergang werden im Vergleich mit dem Wérmeaustausch bei eindimensionaler Warmestrahlung
zur Diskussion gestellt.

CJIOXKHBIN TEIUJIOOEMEH B TPVEBE IPU JBYXMEPHOM PACITPOCTPAHEHHUU
TEIUIOBOT'O M3JIVYEHHMS B CBSI3U C POCTOM TEMIEPATYPHI JBUXVIHEUCS
CPEJBI BBEPX IO TEHEHUIO OT YYACTKA HAT'PEBA

AmnoTtama — B cTaThe NPUBOOKUTCH AHATTMTHYECKHMI METO PacyeTa OAHOBPEMEHHOTO KOHBEXTHBHOTO
¥ JIYYHCTOTO MEPEHOCA TEIia NPH MOMHOCTBIO Pa3BHTOM JIAMHHAPHOM TEYCHHU B TpyDe C yu4eToM
ABYXMEPHOIO pacrpoCTpaHeHUs JyYHCTOro nepeHoca. I[IpHBOAATCA TaKxe YUCNEHHBIE NaHHBE MO
npohusIsM TEMIEpaTyphl H XapaKTePUCTHKaM INepeHoca Teruta. [jis pelleHys ypaBHEHHS 3HEPTHK
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NPY HAJTHYHH XBYXMEPHOTO JIy4MCTOrO NEPEHOCA HEOOXOIHMO HMETh PElIEHHA JUIA BCceX NHaNa3oHOB
TEMIIEPATYPHOTO NOJIA KaK B MNONEPEYHOM, TaK ¥ B NPOLOJLHOM HATPABICHHH TEYEHHSA XHIKOCTH.
Kpome Toro, ny4dcTslif TETIOBO# NOTOK OT HArpeTolt CTEHKH PacpOCTPaHACTCA BBEPX MO TEUYCHHIO,
410 TpebyeT pacCMOTpeHHs TEMNEPATYPHLIX Npoduiel XBUXYLIEHCs CpeAbl Ha ONPEAEIEHHOM
PACCTOSIHHHE BBEPX 10 TEYEHHIO OT BXOAA B Y4acTOK HarpeBa. Takum o6pa3om, pazmep MaTpHUbI
JomxeH GBITL Ype3BbIvaitHO GONTBIIMM, €C/IH HEOGXOANMA YIOBIETBOPHTENbHAA TOYHOCTh pacyeTa.
ITo3TOMY HCHONB3YETCH METOM JIEHTOYHOH Marpuubl. [laHpl TeMmepaTypHbie Npodunu cpenbl Kax
BBEDX, TaK ¥ BHH3 110 TEYEHHIO OT BXOAa B YYACTOK Harpesa M MOAPOGHO pacCMOTPEHbI PEe3yIbTaThl
MO TemooGMeHy B CPABHEHHH CO CITy4aeM OLZHOMEPHOTO JIyYHCTOTO MEPEHOCA.
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