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Abstract-This paper presents an analytical procedure for simultaneous convective and radiative heat 
transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional 
propagation of radiative transfer and also shows the numerical results on the temperature profiles 
and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional 
radiative transfer, one has to solve the entire ranges of the temperature field simultaneously both 
along the radial and flow directions. Besides the heat flux by thermal radiation emitted from the 
heating wall propagates upstream so that it is necessary to examine the temperature profiles of the 
flowing medium to a certain distance upstream from the entrance of the heating section. In this way 
in order to attempt to solve the governing equation numerically by a finite difference method the 
dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation 
is required. Consequently the band matrix method is used and the temperature profiles of the medium 
in the both regions upstream and downstream from the entrance of the heating section are illustrated 
and the heat-transfer results are discussed in some detail by comparing with those of the onedimensional 

transfer of radiation. 

NOMENCLATURE 

B(T), intensity of black body radiation, = ((T/n)T4; 

g(rr,), 
specific heat of fluid at constant pressure; 

integral defined by equation (25); 
F&r,, 7J, integral defined by equation (24); 

f 8’ extinction function of thermal radiation 
from fluid; 

f W, extinction function of thermal radiation 
from wall; 

H(7,q), integral defined by equation (14); 
H&7,(z,, 7. q), integral defined by equation (15); 
h 

Z,&, 
local heat-transfer coefficient; 
modified Bessel function of first kind with 
nth order; 

r, lattice point of finite difference along axial 
direction; 

J9 lattice point of finite difference along radial 
direction; 

J( T’,), radiation intensity from wall; 
K,,(y), modified Bessel function of second kind 

with nth order; 

k, thermal conductivity of fluid; 
1 09 number of divisions of lattices along axial 

direction in the region upstream; 
1 1, number of divisions of lattices along axial 

direction in the region downstream; 
9 number of divisions of lattices along radial 

direction; 

NRY dimensionless parameter denoting relative 
role of conduction to radiation, 
= uk/4aT,J; 

Nugc, local Nusselt number by convection; 
Nu~R, local Nusselt number by radiation; 
NugT , local Nusselt number; 

pr, 
4c9 
qR3 
41, 

qRr> 

h.x, 

R 
Re, 
r, 
s, 

T 
T In? 

T WY 

T WO? 

T Wl? 

t, 

u, 
U, 

number of divisions of lattices along 
circumferential direction; 
Prandtl number; 
convective heat flux; 
radiative heat flux vector; 
radiative heat flux; 
radial component of radiative heat flux 
vector; 
axial component of radiative heat flux 
vector; 
pipe radius; 
Reynolds number; 
radial coordinate; 
distance between medium under 
consideration and medium situated at 
another point (Fig. 1); 
distance between medium and wall surface 
(Fig. 1); 
temperature of fluid; 
cup-mixing mean temperature of fluid; 
wall temperature; 
wall temperature in the region upstream 
from heating section; 
wall temperature in the region downstream 
from heating section; 
optical distancedefined by (7,1 - 7,9) (Fig. 1) 
dimensionless axial velocity, = u/y, ; 
axial velocity of fluid; 
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UlPlY mean axial velocity of fluid; 

% axial coordinate; 

-Xl, axial coordinate of other medium; 

Y9 independent variable in equation (14); 

ZOt optical distance shown in Fig. 1; 

Zll optical distance shown in Fig. 1. 

Greek symbols 

surface emissivity of wall; 
dimensionless radial coordinate, = r/R; 
finite difference of r~; 
dimensionless temperature of fluid; 
dimensionless mixing mean temperature of 
fluid; 
dimensionless wall tem~rature in the 
region upstream; 
dimensionless wall temperature in the 
region downstream; 
absorption coefficient of fIuid for radiation; 
viscosity of fluid; 
kinematic viscosity of fluid; 
dimensionless axial coordinate, 
= (~/R)/(RePr); 
fmite difference of r; 
density of fluid; 
Stefan-Boltzman’s constant; 
optical thickness; 
optical radius, = KR; 
optical distance between medium under 
consideration and medium situated at 
another point (Fig. 1); 
optical distance between medium and wall 
surface (Fig. 1); 
optical axial coordinate, = ox; 

optical axial coordinate, = xx1 ; 
azimuthal angle; 
interval of finite difference along 
circumferential direction. 

researchers and the relevant exposition on the numeri- 
cal analyses is found in the literature [34]. With a 
few exceptions the radiative heat flux, appeared in the 
energy equation, is approximately expressed as one- 
dimensional propagation. In the current study, the 
propagation of thermal radiation is treated as being 
twodimensional and then the contributjons of radi- 
ative energy from the wall surface and the flowing 
medium are estimated more exactly and the validity 
of the one-dimensional analysis of radiation, the tem- 
perature profile in the region upstream from an 
entrance (x d 0), the temperature profile around the 
starting point of the heating section and the heat- 
transfer characteristics will be discussed in some detail. 
AIthou~ there are a few reports [5-6] in which the 
radiative heat transfer is taken into account as being 
two-dimensional, they are in want of the precision due 
to the constraints in numerical procedure and the 
analytical methods used are in want of generality and 
further the propagation of thermal radiation into the 
region upstream is not considered at all. Alternatively 
on account of the axial heat conduction the heat 
transfer into the region upstream from the region 
downstream should be considered both for a flow with 
extremely low velocity [7] even if the effect of radiation 
is not prominent and for low Prandtl number medium 
such as liquid metal. 

1. INTRODUCTION 

ALTHOUGH a number of studies on composite heat 
transfer with flowing radiative gases in a circular tube 
have been performed, further investigations on the 
heat transfer with the thermal radiation under high 
temperature and high heat flux have become in- 
creasingly important in recent years with the develop- 
ment of high temperature techniques. In general, the 
radiative heat transfer is characterized by its funda- 
mental nature as having an action-at-a-distance and 
selection rule for the frequencies, i.e. nongray behavior. 
Being cumbersome to analyze by taking account of 
the nongray characteristics of radiating media, there 
exists, however, no essential difficulty in mathematical 
treatments and recently a few analytical methods 
[l-2) have been reported. On the other hand, the 
action-at-a-distance can be expressed by the integral 
terms in an energy equation, which results in the 
integro-differential equation with high order non- 
linearity. The analytical treatments on this integro- 
differential equation have been developed by many 

2. THEORETICAL ANALYSIS 

2.1. Descriptions of problem 
The coordinate system and the physical model are 

illustrated in Fig. 1. The basic assumptions and the 
postulations introduced for the analysis are as follows. 

FIG. 1. Coordinate system and physical model. 

0) 

(ii) 

(iii) 

The flowing medium is a nonscattering radiative 
gray gas which can absorb and emit thermal 
radiation. 
The flowing medium is incompressible and the 
physical properties of the medium are constant. 
The surface of a pipe is a gray diffuse emitter 
and reflector. 
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(iv) The flow field is fully developed laminar and its 
velocity profile is parabolic from the pipe inlet. 

(v) The surface temperature is Tti in the region 
upstream from the heating section (x c 0), and 
T,, in the region downstream from the heating 
section (x > 0). 

(vi) The radiation field is in local radiative equilib- 
rium and the two-dimensional propagation of 
radiation is taken into account (i.e. the approxi- 
mation aqR,/&x C-C (I/r)d(rq,,)/lk is not valid). 

The formulation of the energy equation with the one- 
tensional radiative transfer yields a ~ntradi~ion to 
the assumption (v) and the tractable speculation shows 
that the radiative heat flux from the wall around the 
entrance region (x = 0) may be overestimated by a 
factor of 2T:J(T,4, + T,4) and, further, a rate of tem- 
perature rise along r is not evaluated rigorously. In 
the one~~~sional appro~mation of radiative trans- 
fer the contribution of radiation from the high tem- 
perature surface and the heated flowing medium to 
the medium in the region upstream are not considered 
at all. Though the foregoing contributions of radiation 
may be seemingly counterbalanced by each other as 
the resultant heat-transfer chara~e~sti~, it may be 
stressed that the two-dimensional transfer of radiation 
has to be taken into account for the purpose of 
examining the temperature profiles and the heat- 
transfer mechanism in detail. Further it is worth noting 
that the consideration of medium upstream from the 
entrance as a consecutive flowing medium to the 
heating section is of importance as a basic kind of 
heat-transfer problem. 

2.2. Basic equations 
Based on the assumption that the flow field is the 

fully developed iaminar flow, the heat balance in the 
pipe flow yields the basic equation governing the 
temperature field. 

(I) 

Where dive, is the divergence of the radiative heat 
flux vector and is given as follows. 

-div% = K 
s 

J(xl)fw(x,r; x,,R)dS 
s 

In equation (2) the first and second terms on the 
righthand side represent the contributions by emission 
from the wall and other flowing medium, respectively 
and the third term represents self-emission by 4 
medium itself. The boundary conditions are taken as 
follows. 

r=o: aT/ar = 0 

r=R: T = r;,(x > 0), T = T,,(x G 0). 
(3) 

x= --co: T= ?I&,. (4) 

Since equation (4) in the boundary conditions has to be 
treated carefully in numerical calculations, it will be 
discussed later. Referring to Fig. 1, equation (2) becomes 

-dive, = 2~: 
e3 * 

JJ expt--wJ 

-CD 0 
md & 

x R(R-r.cos4)d+dx,+2K26 
7r 

x dxr dr, -4~oT~(x, r). (5) 

Nultiplying both sides of equation (1) by (R’/kT,,) 
and arranging it in the dimensionless form, the energy 
equation can be manipulated into the form, 

dr,i drlr 

- 2 @“(r,, rt) (6) 

where the dimensionless variables and parameters in 
equation (6) are defined as 

0 = T/T,, 5 = (x/R)/RePr, Re = 2u,,,Rfv, 

Pr = c&k, NR = kK/b’&?,, z. = KR, 

T=Kr, Zx=KX, Z,,= KSw, T5.=K% 
(7) 

q = r/R = zj~~, u=u/u.= 2(1-+) 

Referring to Fig. 1 again rS,,, and r, are given by 

7,, = (P-P&f 

= wx -~,1)2+~"+~~-2~~o~~~~~b (8) 

'5, = (P+z:)* 

= CC% -Tr,,)2+r~+~~-22rzrcosf#J]f. (9) 

The boundary conditions are rewritten as follows. 

tf=o: ae/aq=o, rt=i: e=e, (10) 

l= --co: e=oti (II) 

where BW denotes the dimensionless wall temperature 
and is given by, 

2.3. Simplification of radiative heat&X 

Performing the integration on z,, under consider- 
ation of rX,, - rX = t and dr,, = dt in the radiative term 
which denotes the contribution of radiation from the 
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rxc 0 T-,= 0 TX>0 

FIG. 2. Lattice of finite difference. 

wall, the radiative term becomes as follows irrespective 
of the signs of 7X. 

= (O$, +&@(7,rl) + (%, -Q&)&(%r 7J) (13) 

where H(z,,q) is the same function as the extinction 
function of radiation from the wall used in the one- 

dimensional approximation of radiative transfer and is 
defined as 

I 

a 

H(7,?) = ~,(w)~,(wJV’ dy (14) 
1 

and H&z,, T,V) is defined as follows. 

H&x, W) 

zcos@d4dt: (15) 

Here, I,(y) and K,,b) are the modified Bessel functions 
of the first and second kind with nth order, respectively. 
The radiative term which denotes the contribution of 
radiation from other medium cannot be calculated 
independently because of the presence of unknown 
temperatures 0(t,, , ql) in the integrant in equation (6). 

3. NUMERICAL ANALYSIS 

3.1. Principal procedure 
Energy equation (6) constitutes an integro-differen- 

tial equation with high order nonlinearity on 13 and it 
seems to be formidable to get an analytical solution. 
Therefore, one has to calculate numerically and a finite 
difference method may be a plausible means. It may 
be pointed out concerning the numerical computation 
that as the progressive procedure on 5 cannot be 
applied to solve the energy equation, the problems 
should be solved simultaneously in a proper controlled 
volume and that the number of the grids of finite 
difference in the controlled volume is restricted to the 
capacity of the computer. The controlled volume must 
include not only the region upstream (5 < 0) but the 

region downstream (5 > 0). Therefore, transforming the 

energy equation into the algebraic equations by the 
finite difference method, we have to solve the simul- 
taneous linear equations having an extremely large 

dimension. 

3.2. Finite d$erence approximations 
The equally spaced lattices of finite difference are 

illustrated in Fig. 2. The intervals of finite difference 

along 5, q and 4 are designated A& Ay and A4, 
respectively, and the radius is divided into m-equal 
increments and the circumference into n-equal in- 
crements (i.e. m. A? = 1, n. A4 = n). A4 is not restricted 

especially in a magnitude but Au is restricted because 
of the precision in the evaluation of heat-transfer 
coefficient. q is divided into ten equal increments in 

executing the computation (m = 10, Aq = 0.1) and 

further the lattice intervals near the wall is subdivided 
into two equal increments so as to elevate the precision 
in the evaluation of heat-transfer coefficients. The cir- 

cumference is divided into thirty-six equal intervals 
(n = 36, A4 = n/36) and the integrals on 4 is estimated 
by the trapezoidal formula. Intervals of finite difference 
along < will be discussed later in detail. In practice, 
the numerical calculations cannot be performed in the 

region from -co to + zz with respect to r and 

therefore the controlled volume should be set in a 
certain region from - I0 At to II At along 5. As the 
total number of lattices of finite difference should be 

determined by the capacity of the computer, and there- 
fore we choose /o = 9 and I1 = 21. However, the con- 

tribution of radiation is considered in the region 

from -(lo+ 1JA< to (lo+ jl)At around an arbitrary 
point (5 = i.A<) and further the temperatures in the 
region outside of the controlled volume are approxi- 
mated to be identical with those at 5 = -lo A< and 
l1 A< as illustrated in Fig. 3. In such a case it is 
favorable to satisfy the following condition, 

~(1~ + I,)Ax = (I,+ [1)A@ePr7, >> 1 (16) 

(this means that the radiation is attenuated sufficiently 
when it travels for an optical path of K(& + &)Ax) and 
further it is desirable to consider up to 0.1 where 
the convective temperature field develops sufficiently, 
provided the radiation is not taken into account. 
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.+X039 &Oci)3 &=-oxoo9 eo.0 

FIG. 3. Floating region for calculating the radiative term. 

3.3. Numerical methods 
By the finite difference approximations the equation 

(6) results in 

- 

dr,,drI,-$t14(i,j). (17) 
R 

The integrals of radiative terms on the r.h.s. in equation 
(17) are calculated by the trapezoidal or Simpson’s 
formula. After the solution O(i, j)(O) in the entire region 
of controlled volume without radiation is obtained, it 
substitutes the radiative terms to obtain the first 
approximation e(i, j)(r) and then the similar compu- 
tations are performed repeatedly until the prescribed 
convergence is satisfied. The convergence criterion is 
given by the following inequality. 

Ie(i,j)cP)-e(i,j)(p-l)( < 00005. (18) 

It needs to solve simultaneous linear algebraic equa- 
tions of large dimension in order to get the solution 
for the entire ranges of x and r. Fortunately the non- 
zero elements in the coefficient matrix are com- 
paratively few, and then the band matrix method [8] 
is plausible for the present system. 

3.4. Few remarks on per$orming numerical calculations 
In order to get a better perspective of the numerical 

calculations, and the evaluation results, it is worth 
presenting the following discussions. 

(i) At first we speculate the intervals of finite differ- 
ence along r. It is noticed easily that 75,l is used as a 
variable in the integration with respect to r in the 
radiative term: Designating an infinitesimal of 7xl as 

A7xl9 there exists a folIowing relation between AzX1 

and an interval of finite difference A<. 

AzXi = Kx = At.Re.Pr.7,. (1% 

Accordingly, it is found that the precision of numerical 
integration along [ does not depend on A< but 
r,RePrA<. Based on a* theory of stability of finite 
difference scheme on the parabolic partial differential 
equation, a ratio of Aq to At is not restricted especially 
so long as the finite difference technique of an implicit 
method is used. However, even if the finite difference 
approximation is performed with the aid of an implicit 
method, Aq/Ar is not arbitrary because A7,1 is re- 
stricted to the precision in the numerical integration 
of the radiative term. Then Al is limited in a magnitude. 
In order to eliminate this restriction on the precision 
of numerical integration with respect to 5, it will be 
necessary to approximate the integrant by a proper 
polynomial based on the data in some lattice points 
and to integrate this polynomial analytically. 

(ii) Next a settlement of the starting point of the heat- 
ing section is discussed briefly. The wall temperature 
varies stepwisely from TWO to T,, at the starting point 
of the heating section and it has to be stressed that 
the fluid temperature at 5 = 0 is uniform provided 
thermal radiation is absent. On account of finite 
differentiation of the controlled volume there exist two 
types of variation of the wall temperature and they 
are illustrated schematically in Fig. 4 when the radiative 
transfer is not taken into consideration. In case of (I) in 
Fig. 4 the temperature of medium at the starting point 
of the heating section in the convective temperature 
field has already been raised because of the grid for finite 
difference adopted here (shown in Fig. 2) so that the 
wall temperature between C = -A< to r = O*O+ has to 

+ 

Lkiationr 
of wall 

pemt- L ure 

nvective 

Kz- 
atid 

FIG. 4. Variations of wall temperature near the 
starting point of heating section. 
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be regarded as Twl, in other words, the starting point 
of the heating section must be shifted to 5 = -At. 
On the other hand, in case of (II) in Fig. 4 the 
temperature of medium at the starting point of the 
heating section is uniform and equals to initial tem- 
perature Two, because the wall temperature at that 
point is restricted to Two, so that this is plausible for 
a settlement of the starting point. Accordingly we 
adopt case (II) in Fig. 4 as the variation of the wall 
temperature and the starting point of the heating 
section is denoted by 5 = O.O-. The starting point of 
the heating section may be, however, dependent on 
the type of the grid for finite difference. 

(iii) Finally as already shown the convective term in 
the energy equation is approximated by the following 
finite difference. 

80 O(i, j) -e(i- 1,j) 

ax= Ax . 
(20) 

At first, it is expected that aQ/ax could be approximated 
by the following finite difference approximation. 

ae e(i+l,j)-e(i- 1,j) 

ax= 2Ax ’ 
(21) 

With this approximation, however, it was not easy to 
get a tractable convergence which showed a wavy 
vibrating profile of temperature along the radius. Con- 
sequently the finite difference approximation of se/ax 
is performed by equation (20). 

4. EVALUATION RESULTS AND DISCUSSIONS 

4.1. Temperature profiles 
The typical results of temperature profiles calculated 

here are illustrated in Figs. 5-8. Figures 5 and 6 
illustrate the variation of the temperature profiles with 
the parameters of a reciprocal of Graetz number, 5. 
The broken lines denote temperature profiles without 
radiation. Figure 5 corresponds to the results for 
T, = 1.0 and RePr = 1000. The temperature profiles in 
the region upstream from the heating section are 
characterized by the temperature peak near the wall. 
The reason why there exists the temperature peak near 
the wall in the region upstream is that the medium 
in this region is heated by the radiation from the 
region downstream and, therefore, is effected strongly 
by the radiation from the heating wall in the region 
downstream. Since the medium in the region upstream 
is heated by the radiation alone, a rate of temperature 
rise is rapidly reduced as aparting from the starting 
point of the heating section and the temperature in 
5 < -0QOO5 is almost as same as inlet temperature, 
T,,. Chained lines in the central part of a pipe in the 
region downstream are obtained by the actual cal- 
culations, which may be attributed to the presence of 
a singular point on the central axis of a pipe and such 
a behavior is also observed in the one-dimensional 
analysis of radiation. However, as these curves do not 
satisfy the boundary condition, i.e. %/ar = 0 at r = 0, 
the physically plausible curves are drawn by the solid 

0.6 

0.5 

Dotted lines denote- 
convection without 

0 0.2 0.4 0.6 0.6 

FIG. 5. Temperature profiles vs (r,-~)/r, (effect 
of 0. NR = 0.01; 5, = 1.0; RePr = 1000. 

Dotted lines denot! 
convection withou 

0 0.2 0.4 0.6 0.6 

In--T 

FIG. 6. Temperature profiles vs (T.-T)/?, (effect 
of C). Nn = 0.01; T,, = 20; RePr = 1000. 

lines in this and subsequent figures. Figure 6 illustrates 
the temperature profiles for T, = 2.0, NR = 0.01 and 
RePr = 1000 with the variation of parameter, <. The 
effects of Na on the temperature profiles are shown in 
Fig. 7. For the medium upstream, i.e. for C < O*O-, 
the temperature rises uniformly in the entire region 
of a pipe as Na decreases. On the contrary, as NR 
increases and is larger than 0.1, the temperature rise 
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Broken lines denote. 
the results obtoinec 
by one-dimensional 
approximation of 

rodiotion 
No. No. 

0 0.2 0.4 0.6 I.0 

FIG. 7. Temperature profiles vs (r,-r)/?. (effect 
of NJ. RePr = 1000; T, = 1.0; 5 = OQ- and OQOl. 
Broken lines denote the results obtained by one 
dimensional approximation of radiation. 1, 2, 3, 

5 = o.o- : 4, 5, 6, t = 0.001. 

’ 
NR= 0.01 
( = O.O- and 0.0 

Broken lines denote! 
the results obtainel 
by one-dimensional 
approximation of 
radiation 

No. No. 
I II i\ II 

0.E 

01 

3 

d- 

In 

, 

-Ii 
I.0 

FIG. 8. Temperature profiles vs (T,-r)/7, (effect 

of q,). RePr = 1000; NR = 0.01. Broken lines 
denote the results obtained by one-dimensional 
approximation of radiation. 1, 2, 3, r = O.O-; 

4,5,6, C = O+W. 

in the region upstream almost diminishes and ap 
proaches to the case of the one-dimensional approxi- 
mation of radiation. For the medium downstream, 
corresponding to 5 = 0001, the temperature profiles 

are not distinguished from that without radiation as 
Na is larger than 0.1. The temperature profiles obtained 
by the one-dimensional analysis of radiation are lower 
than those obtained by the two-dimensional one and 
further the temperature difference between them 
tends to increase as Ns decreases. The influences of 
the optical thickness 7,, are depicted in Fig. 8 for 
RePr = 1000 and NR = 0.01. In the region upstream, 
as 7. increases, the temperature peak near the wall 
becomes higher and approaches to the close vicinity 
of the wall. The temperature in the central part is not 
elevated even if 7, increases. Such phenomena may be 
attributed to the fact that the radiation energy pen- 
etrates into the medium in case of small z,, while in 
case of large r, the radiation energy can not travel 
into the deep central core even if the wall is kept at 
high temperature and emits radiation intensively. In 
the region downstream the remarkable temperature 
rise is observed in the vicinity of the wall, while the 
temperature in the central core is rather lower. Com- 
pared with the temperature profiles obtained by the 
one-dimensional analysis of radiation and those ob- 
tained by the two-dimensional one for constant 7,, the 
former is lower than the latter. As to an effect of RePr 
on the temperature profile in the region upstream 
the temperature peak near the wall is higher with 
decreasing RePr but the temperature in the central 
part is elevated with increasing RePr. In general, as 
the residence time of medium in a pipe is longer with 
decreasing RePr and then the medium absorbs much 
radiation with the increment of residence time and 
the radiation from the region downstream penetrates 
easily into the region upstream with a decrease of 
RePr, the temperature rise in a pipe ought to be higher 
with a decrease of RePr for constant Na and 7,. 

4.2. Cup-mixing mean temperatures 
The cup-mixing mean temperature in a dimension- 

less form is defined as 
1 1 

em = 

s 
we(dw 

11 
U(rlhdv. (22) 

0 0 

Figure 9 illustrates the relation between em and 5 as 
the parameters of denoting the relative role of con- 
duction to radiation Na and the optical thickness 7,. 

In case of constant RePr and q,, the radiation emitted 
from the medium in the region downstream penetrates 
into the deeper region upstream as NR decreases, so 
that 8, increases appreciably through the wide region 
upstream. In case of constant RePr and Nx, the larger 
7,, is, the higher em is, but @,, decreases rapidly as 
aparting from the entrance of the heating section. 
Compared to the results obtained by the one- 
dimensional analysis of radiation with those obtained 
by the two-dimensional one in the region downstream, 
it is found that em is underestimated in case of the 
one-dimensional analysis. Reference to the figure 
reveals the fact that although the radiation from the 
wall surface in the region upstream is overestimated 
near the starting point of the heating section in the 
one-dimensional analysis, the temperature rise in the 
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0 .e- 

,7- 

,6- 

No RePr L N, I 

Dotted lines denote t 
iesults obtained by 
one-dlmensional 
approximation of 
radiation 

001 0.0 0001 0-t 
C 

FIG. 9. Cup-mixing mean temperature vs 5 

region upstream is ignored completely. By the way, 
although, in the current study, the contribution of 
radiation from other medium is underestimated due to 
the limited controlled volume, 0, obtained by the two- 
dimensional analysis of radiative transfer is rather 
higher than that obtained by the one-dimensional one. 
Therefore these results are considered to be evaluated 
in perspective of appropriate controlled volume and 
the substantial difference will not be found even if the 
computations will be repeated more exactly by taking 
the larger controlled volume into account. The detailed 
examination on this figure shows that when NR becomes 
large and radiation is not dominant, there exists a 
region where the temperature profiles obtained by the 
one-dimensional approximation are higher than those 
obtained by the two-dimensional propagation of radi- 
ation. This is understood as follows. Since the tem- 
perature rise in the region upstream is small for large 
NR in case of the two-dimensional analysis and such 
a situation resembles the assumption used by the 
one-dimensional case in which the contribution of 
radiation from the wall surface in the region upstream 
is overestimated, 0, obtained by the one-dimensional 
approximation is higher than that obtained by the 
two-dimensional treatment. In the region far down- 
stream 0, obtained by the two-dimensional analysis, 
however, is higher than that obtained by the one- 
dimensional one even if Na is large. This fact indicates 
that the contribution of radiation from other medium 
is underestimated by the one-dimensional approxi- 
mation in this region. The examination on the variation 
of 0,,, with the variation of parameter RePr is not 
reproduced here on account of a similar trend as 
discussed in Section 4.1. 

4.3. Net radiative heatjux at wall surface 

The net radiative heat flux at the wall surface q, 
consists of leaving and incoming fluxes of radiation 
and is obtained by subtracting the radiation heat flux 
which is emitted by the other wall and reaches to the 
controlled surface after being attenuated by the flowing 
medium and the radiative heat flux emitted by the 

/ 

/ 

3 

002 

flowing medium of the entire controlled volume from 
the radiative heat flux emitted by the controlled surface. 

where 

x (l-?~cos9)dgjti~d~ldr,,J (23) 

expt;;sw) (1 -cos @‘dddt (24) 

Fl(r,) = m !. 
s s 

’ exp~;rs”‘) (1 -cos &‘d4dt (25) 
0710 SW 

here FI = 0.291917 for r, = 0.5, FI = 0.203573 for 
7, = 1.0 and FI = 0.118225 for 7, = 2.0. In case of 

eWo = fki, q1 in equation (23) is agreed with that 
obtained by the one-dimensional approximation of 
radiative heat flux. Figure 10 illustrates the relation of 
4, vs 5. In the domain of 5 < 0 the radiative heat flux 
is negative and the absolute value is plotted in the 
figure. The radiative heat flux is sufficiently decayed 
in the controlled volume in the region upstream and 
for constant NR as 7’. becomes large, the trend of drastic 
extinction of the radiative heat flux is found. This fact 

0.1 No r. NR 
I I 0.005 

5 1 gp 
d I 0.01 0.5 

: $ 2 0.05 0.1 
8 2 0.5 

0.01 I I ,,,I/,,, 
-0.001 0.0 0.001 

c 
0.002 

FIG. 10. Net radiative heat flux at the wall vs < (in case of 
RePr = 1000, in r d 0 radiative heat fluxes are negative but 

in this figure the absolute values are illustrated). 
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seems to show the controlled volume adopted here in 
the region upstream is valid. In the region downstream, 
the radiative heat flux is increased as the parameter 
Na decreases for constant optical thickness t,, while 
the radiative heat flux is shown to decrease as the 
optical thickness r, decreases when the parameter NR 
is held constant. Further it is found that the radiative 
heat flux obtained by the one-dimensional approxi- 
mation of radiation is smaller than that obtained by 
the two-dimensional estimation near the starting point 
of the heating section. This is due to the fact that in 
the region downstream the radiative heat flux by the 
one-dimensional analysis is smaller than that by the 
two-dimensional one because of the underestimation 
of radiation from the wall surface in the region up- 
stream, provided that the contribution of radiation 
from other medium is not underestimated. But, for 
small Ns the radiative heat flux by the one-dimensional 
analysis tends to be larger than that by the two- 
dimensional one. This is caused by the fact that the 
contribution of radiation from other medium cal- 
culated by the one-dimensional analysis is under- 
estimated than that calculated by the two-dimensional 
one. 

4.4. Heat-transfer characteristics 
Nusselt number is defined so as to evaluate the 

heat-transfer characteristics and for the two-dimen- 
sional propagation of radiation the local Nusselt 
numbers are defined in a similar way to the one- 
dimensional radiative transfer. 

h,.2R 
NueT = k = k+qR 

k(T,- T,) 
.2R = NUT+ Nt+R (26) 

do 
NutC = 2 - 

0 
atl /L-e,) (27) 

'I 

kL, 
N“,R = 2 y- 

(> 
qR/(&v-em). 

Figure 11 illustrates the relation between these local 
Nusselt numbers against 5. Reference to Fig. 11 for 
RePr = 1000 and r, = 1.0 reveals that Nut, is in- 
creasing rapidly far from the starting point of the 
heating section upstream. It is found that the heat- 
transfer characteristics obtained by the one-dimen- 
sional analysis are underestimated than those obtained 
by the two-dimensional one near the starting point 
of the heating section down the stream. This is due to 
such a trend that Nu, and NueR in the one-dimensional 
case is larger than those in the two-dimensional one. 
The broken lines in these figures, denoted by Nuec, 
tend to be small as Nz decreases and such a phenom- 
enon indicates that a ratio of convective heat transfer 
to the overall heat transfer decreases with a decrease 
of Nz. Reference to Fig. 11 again for RePr = 1000 
and r,, = 2.0 shows that the results obtained by the 
one-dimensional approximation, being depicted only 
for N s = @Ol, are smaller than that obtained by the 
two-dimensional evaluation. 

’ RePr = IO3 ’ 

h ~0 NR 
- Nut, 
___Nl+ ; / 0”:: 

_.-OnaL 3 I 0.01 
dimensional 4 I 0.005 

Convection 5 2 0.0 I 
only 

FIG. 11. Local Nusselt number Nugr and NutC vs 5 
(RePr = 1000). 

5. CONCLUDING REMARKS 

On composite heat transfer of laminar flow in a 
circular tube the energy equation with the two-dimen- 
sional propagation of thermal radiation is solved 
numerically for a certain controlled volume involving 
the region upstream from the starting point of the 
heating section. Further the validity of one-dimensional 
propagation of radiation, the temperature profiles 
around the entrance of the heating section and the 
heat-transfer characteristics have been examined in 
some detail. The important conclusions obtained here 
are as follows : 

(1) For large dimensionless parameter Na the tem- 
peratures in the region upstream do not increase and 
are almost identical to those in case of pure con- 
vection. For small Ns the temperature profiles in the 
region upstream are characterized by the temperature 
peak near the wall, which becomes higher with a 
decrease of Ns and approaches to the close vicinity 
of wall with an increase of optical thickness, r,. In 
general, for constant r, the temperature rise in the 
region upstream becomes prominent with a decrease 
of NR and the temperature is elevated to a certain 
extent up to the region far upstream and for constant 
Ns a rate of temperature rise decreases with an increase 
of r,. 

(2) The temperature profiles and the mixed mean 
temperatures obtained by the one-dimensional ap- 
proximation of radiation tend to be lower than those 
obtained by the two-dimensional evaluation of radi- 
ation at small reciprocal of Graetz number < and such 
a tendency is emphasized for small NR and for large r, . 



1158 Rvozo ECHIGO, SHU HASEWAGA and KOICHI KAMIUTO 

(3) The local Nusselt number, NugT in the region 

upstream from the heating section increases rapidly as 
aparting from the starting point of the heating section. 
The heat-transfer characteristics obtained by the one- 
dimensional analysis is underestimated than those 
obtained by the two-dimensional one near the entrance 

of the heating section in the region downstream. 
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TRANSFERT DE CHALEUR MIXTE DANS UN TUBE AVEC RAYONNEMENT 
THERMIQUE BIDIMENSIONNEL-EN RELATION AVEC L’AUGMENTATION DE 

TEMPERATURE DANS L’ECOULEMENT EN AMONT DE LA SECTION DE CHAUFFAGE 

R&urn&L’article prt%sente une mCthode analytique pour l’ktude du transfert de chaleur par convection 
et rayonnement simultanb en tcoulement laminaire Ctabli dans un tube en tenant compte de la propagation 
bidimensionnelle du rayonnement. Sont egalement prisentts les resultats numeriques relatifs aux profils 
de tempbature et aux caractkistiques du transfert thermique. Afin de rboudre l’huation de l’knergie 
avec rayonnement thermique bidimensionnel, l’on doit traiter simultankment, toute l’ttendue du champ 
de tempkature a la fois dans la direction radiale et dans la direction de l%coulement. De plus, le flux 
de chaleur par rayonnement thermique emis par les parois chauffantes se propage g I’amont, si bien 
qu’il est n&cessaire d’examiner les profils de tempixature dans l’koulement ti partir d’une certaine distance 
situ& h l’amont de l’entrk de la section de chauffage. Ainsi, afin de tenter de rboudre l’huation 
fondamentale numkiquement h I’aide d’une mtthode de diffbences finies, la dimension de la matrice 
devient trls grande pour que la validitt exigQ des calculs numkiques soit satisfaisante. En conshuence, 
la mkhode de zone est utilisk et les profils de tempbature dans le fluide sont calculb aux niveaux 
amont et aval de la riigion d’entrke de la section de chauffage. Les r&hats de transfert de chaleur sont 

discutb en d&ail par comparaison avec ceux du transfert par rayonnement unidimensionnel. 

WARMEUBERGANG IM ROHR BE1 ZWEIDIMENSIONALER WbiRMESTRAHLUNG 
IN VERBINDUNG MIT DEM TEMPERATURANSTIEG IN DER STRt)MUNG 

STROMAUFWbiRTS VOM BEHEIZTEN ABSCHNITT 

Zusammenfassung-Der Aufsatz stellt die Analyse des gleichzeitigen WBrmeaustausches durch Konvektion 
und zweidimensionale Strahlung bei ausgebildeter laminarer Rohrstrijmung vor. Fiir die Temperatur- 
profile und den Wgrmelbergang werden Zahlenergebnisse mitgeteilt. Die Liisung der Energiegleichung 
erfolgt unter Beriicksichtigung der zweidimensionalen Wtimestrahlung nach Ermittlung des Temperatur- 
verlaufs in Strb;mungsrichtung und quer zur Striimung. Durch Abstrahlung der HeizIIache findet 
WBrmeaustausch bereits stromaufwlrts statt, so daB es erforderlich ist, die Temperaturprofile in der 
Striimung in einiger Entfernung vor dem beheizten Abschnitt zu iiberpriifen. Auf diese Weise erhiilt man 
bei Anwendung der Methode der finiten Differenzen zur Liisung der Ausgangsgleichung eine Liisungs- 
matrix von erheblichem Umfang, wenn die numerische Auswertung befriedigende Genauigkeit ergeben 
solI. Folglich wird von der Band-Matrix-Methode Gebrauch gemacht, und die Temperaturprofile werden 
stromaufwgrts und stromabwarts vom Eintritt in die Heizstrecke erstellt. Die Ergebnisse fiir den 
Wlrmeiibergang werden im Vergleich mit dem Wtimeaustausch bei eindimensionaler Wiirmestrahhmg 

zur Diskussion gestellt. 

CJIOX(HI&i TEI-LJIOOEMEH B TPYEE I-IPH ABYXMEPHOM PACI-IPOCTPAHEHMR 
TEITJIOBOI-0 M3JIYYEHI45I B CBII3H C POCFOM TEMI-IEPATYPbI flBW~YlIiEfiC5I 

CPEAbI BBEPX II0 TE=IEHIlIO OT YYACTKA HArPEBA 

h5tOTaqllR - B CTaTbe np%iBOABTCB aHaJI&iT&iWCKH8 MeTOA paCyeTa OAHOBpeMeHHOrO KOHBeKTBBHOrO 
li JIyWcTOrO nepeHOCa TenJIa npH nOJtHOCTbH3 pa3BHTOM JIaMHHapHOM TeyeHRI B Tpy6e C yYeTOM 
ABYXM‘ZPHOrO pacnpocTpaHemia nyYncTor0 nepeaoca. np&iBoJ.WTCR TaKXe YHCneHHbIe AaHHble no 
npo&innM TeMnepaTypbr II xapaKTepscTsxaM nepeHoca Tenna. Ann pemeHHs ypaBHeBsn sneprua 
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IlpH HBnWHH .ItByXMepHOrO JIy=iHCTOrO IlC~iiOCa ~eo6xonH~o HMCTb peII.IeHwR JUI~ Bcex AHalla30HOB 

-iUiUepaTypHOrO ITOJ’IR KaK B nOlle~‘IHOM, TBK H B IlpOnOJlbHOM HaIIpaBneHHU TeYeHHR XKHJlKOCTH. 

KpoMe TOTO, Jly’IHCTbIff TC-II.JlOBO# IIOTOK OT HaQCTOlt CTeHKH paC~OCTpaHSIC.TCR BBCPX II0 TeYeHHIO, 

‘ET0 Tpe6)‘eT ~%ZCMOT~HH~I TeMlYepaTypHblX ~O@fJI&i ~BH~Il.teik~ CpJlbl Ha OIlPelleJIeHHOM 

PaCCTORHHH BBepX UO TVleHHH) OT BXOlla B JTCTOK HarpeBa. TaKm o6pa3oh& pashiep MaTpHI& 
AOJl;rccH 6~~x4 YPe3BbIYtiHO 6onbmHM, eCJIH HW6XOJwiMa )‘AOBJleTBOpUTeJIbHaSl TO’SHOCTb PaCYeTa. 

nO3TOMY HCIIOJIb3)‘eTCK MeTOA JIeHTO’iHOfi MaTJ)HUbI. AaHbI TeMIlepaT)‘pHbIe llpO&inH CpCAbl KBK 

BWPX, TaK H BHH3 l-IO Te’IeHHkO OT BXOAa B YYaCTOK HaIQeBa H nOApO6HO PaCCMOTPeHbI pe3yJlbTaTbI 

l-LO TelIJlOO6MeHy B CpaBHeHHH CO CJIy’IaeM OAHOMepHOrO JI)“iEiCTOrO llepHOCa. 


